

13 – 15 April, 2022

Robust Variational Autoencoders and Normalizing Flows for Unsupervised Network Anomaly Detection

Authors

Naji NAJARI^{1,2}, Samuel BERLEMONT¹, Grégoire LEFEBVRE¹

Stefan DUFFNER^{2,3}, Christophe GARCIA^{2,3}

Outline

- **1.** Context and Objective
- 2. Related Work
- **3. Proposed Approach**
- 4. Experimental Results
- **5.** Conclusion and Future Work

1. Context and Objective Smart Home Device Management

1. Context and Objective Smart Home Device Management

Definition:

 Anomalies are patterns in data that do not conform to a well-defined notion of normal behavior [1]

Classical anomaly detectors [2]: 2 steps

- 1. Models the normal expected network behavior
- 2. Anomalies are deviations of the current behavior from the previously built model

[1] Chandola, V., Banerjee, A. & Kumar, V., Anomaly Detection: A Survey. ACM Computing Surveys, 2009.

⁵ [2] Bulusu, Saikiran, Bhavya Kailkhura, Bo Li, Pramod K. Varshney and Dawn Xiaodong Song. "Anomalous Example Detection in Deep Learning: A Survey." IEEE Access, 2020.

Autoencoder-based anomaly detection:

- Training: train an autoencoder to reconstruct normal data [3]

- Minimize the energy function = maximize the log likelihood

$$\log p_{\theta}(x) \ge \mathbb{E}_q[\log p_{\theta}(x|z)] - \mathbb{D}_{KL}[q_{\phi}(z|x)||p(z)] = -\mathcal{F}(x)$$

^{6 [3]} Pol, Adrian Alan, Victor Berger, Cécile Germain, Gianluca Cerminara and Maurizio Pierini. "Anomaly Detection with Conditional Variational Autoencoders." 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 2019.

Autoencoder-based anomaly detection:

- Training: train an autoencoder to reconstruct normal data
- Testing : use the trained autoencoder to detect anomalies

Limitations of existing approaches

- Strong assumption:
 - Training data are anomaly-free, impossible in an IoT context [3]
- Local training: data collection in the LAN
 - Anomalies may contaminate the training data
 - Data poisoning
 - Operational events: configuration errors, hardware failure, traffic congestion

8 [3] Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in neural information processing systems, 2009.

3. Proposed Approach

Problem statement:

- Robust unsupervised anomaly detection [4]
 - The unlabeled training data contain both inliers and outliers (contaminants)
 - The **majority** of the training instances are nominal
 - The ratio of outliers is unknown in advance

Contribution:

- GRAnD, a Generative Robust Anomaly Detector that alternates between
 - 1. Filtering training anomalies
 - Extreme Value Theory (EVT)-based rejection strategy
 - 2. Learn a robust representation using a generative autoencoder

^{9 [4]} Zhou, Chong and Randy Clinton Paffenroth. "Anomaly Detection with Robust Deep Autoencoders." Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017.

3. Proposed Approach EVT-based rejection strategy

Problem statement:

- Early in the training phase, contaminants have larger free energy compared to inliers
 - Isolate these extreme values with the Peaks-Over-Threshold (POT) [5] approach
 - 2 hyperparameters to define: the initial threshold u, and the risk parameter q.

$$u = Q_3(F) + \alpha * IQR(F)$$
$$q = 10^{-3}$$

- where,
 - Q_3 : the third quartile
 - *F*: the free energy of training instances
 - IQR: the Inter-Quartile Range: $Q_3 Q_1$
 - $\alpha = 1.5$
- We perform a sensitivity analysis w.r.t. hyperparameters

¹⁰ [5] Siffer, A., Fouque, P.A., Termier, A., Largouet, C.: Anomaly Detection in Streams with Extreme Value Theory. In: ACM SIGKDD, 2017.

3 losses to optimize:

- 3 losses to optimize:

 $\mathcal{L}(x) = \mathbb{E}_{x \sim D_L}[\mathcal{F}_{\mathcal{L}}(x)] + |m - \mathbb{E}_{x \sim D_S}[\mathcal{F}_{\mathcal{S}}(x)]| + eCDF_m(\mathcal{F}_{\mathcal{U}}(x)) |m - \mathbb{E}_{x \sim D_U}[\mathcal{F}_{\mathcal{U}}(x)]|$

3 losses to optimize:

- 3 losses to optimize:

$$\mathcal{L}(x) = \mathbb{E}_{x \sim D_L}[\mathcal{F}_{\mathcal{L}}(x)] + |m - \mathbb{E}_{x \sim D_S}[\mathcal{F}_{\mathcal{S}}(x)]| + eCDF_m(\mathcal{F}_{\mathcal{U}}(x)) |m - \mathbb{E}_{x \sim D_U}[\mathcal{F}_{\mathcal{U}}(x)]|$$

Minimize the free energy function of L samples

 $\log p_{\theta}(x) \ge \mathbb{E}_q[\log p_{\theta}(x|z)] - \mathbb{D}_{KL}[q_{\phi}(z|x)||p(z)] = -\mathcal{F}(x)$

3 losses to optimize:

- 3 losses to optimize:

Maximize the free energy function of S samples

- |.| is the absolute distance and m is a margin
- we propose to fix an upper bound m, to prevent the loss from diverging

3 losses to optimize:

3 losses to optimize:

 $\mathcal{L}(x) = \mathbb{E}_{x \sim D_L}[\mathcal{F}_{\mathcal{L}}(x)] + |m - \mathbb{E}_{x \sim D_S}[\mathcal{F}_{\mathcal{S}}(x)]| + eCDF_m(\mathcal{F}_{\mathcal{U}}(x)) |m - \mathbb{E}_{x \sim D_U}[\mathcal{F}_{\mathcal{U}}(x)]|$

Minimize the free energy function of L samples

Maximize the free energy function of S samples

Maximize the free energy function of U samples

- Weighted with their anomalousness probability
 - to account for the uncertainty of these instances.
- computed with the empirical Cumulative Distribution Function (eCDF)

Dataset: MedBIoT [3]

- 83 IoT devices
 - 4 families: fans, light bulbs, switches, lock detectors
- Three malwares: Mirai, Bashlite, Torii
 - ~17 million packets : 70% nominal and 30% anomalous
 - 61 metadata-based features
- Training
 - we vary the training anomaly percentage : 0%, 5%, 10%, 15%
 - Outliers are selected randomly from all training outliers
 - We train one model for each device family

Smart switch

Lock detector

¹⁵ [6] Guerra-Manzanares, Alejandro, Jorge Medina-Galindo, Hayretdin Bahsi and Sven Nomm. "MedBloT: Generation of an IoT Botnet Dataset in a Medium-sized IoT Network." ICISSP, 2020.

Results

Results

Sensitivity analysis with respect to hyperparameters

- Comparison between RVAE and GRAnD

GRAnD

4. Conclusion And Future Work

Conclusion:

- GRAnD, a Generative and Robust Anomaly Detector
 - Rejection strategy : filters out outliers contaminating the data,
 - Joint training: learns a robust representation,
 - Inliers can be accurately reconstructed, while outlier reconstructions are corrupted.

Future work:

- Extend this approach to anomaly detection in time-series data
- Detect contextual and collective anomalies

Thank you

Naji NAJARI Samuel BERLEMONT Grégoire LEFEBVRE Stefan DUFFNER Christophe GARCIA naji.najari@orange.com samuel.berlemont@orange.com gregoire.lefebvre@orange.com stefan.duffner@liris.cnrs.fr christophe.Garcia@liris.cnrs.fr

TABLE I: Extracted flow features using NFStream. See [35] for detailed feature descriptions.

Features			Abbreviations
src_port	<pre>src2dst_stdev_piat_ms</pre>	src2dst_duration_ms	src : source (e.g., src_port means the source port of the packet)
dst_port	<pre>src2dst_max_piat_ms</pre>	src2dst_packets	dst : destination
protocol	dst2src_min_piat_ms	src2dst_bytes	src2dst : traffic from source to destination
ip_version	dst2src_mean_piat_ms	bidirectional_min_piat_ms	piat : packet inter arrival time.
dst2src_stdev_piat_ms	dst2src_max_piat_ms	bidirectional_mean_piat_ms	stdev : standard deviation
bidirectional_duration_ms	bidirectional_syn_packets	bidirectional_stdev_piat_ms	ps : packet size
<pre>src2dst_mean_piat_ms</pre>	bidirectional_max_piat_ms	bidirectional_packets	
bidirectional_cwr_packets	bidirectional_bytes	bidirectional_ece_packets	
bidirectional_urg_packets	bidirectional_ack_packets	<pre>src2dst_syn_packets</pre>	
bidirectional_psh_packets	bidirectional_rst_packets	bidirectional_fin_packets	
dst2src_mean_ps	dst2src_stdev_ps	dst2src_max_ps	
<pre>src2dst_cwr_packets</pre>	dst2src_duration_ms	<pre>src2dst_ece_packets</pre>	
bidirectional_max_ps	src2dst_min_ps	<pre>src2dst_mean_ps</pre>	
dst2src_cwr_packets	dst2src_ece_packets	dst2src_urg_packets	
dst2src_syn_packets	<pre>src2dst_max_ps</pre>	dst2src_ack_packets	
dst2src_min_ps	dst2src_psh_packets	<pre>src2dst_stdev_ps</pre>	
dst2src_rst_packets	dst2src_fin_packets	<pre>src2dst_min_piat_ms</pre>	
dst2src_packets	src2dst_urg_packets	dst2src_bytes	
<pre>src2dst_ack_packets</pre>	bidirectional_min_ps	<pre>src2dst_psh_packets</pre>	
bidirectional_mean_ps	<pre>src2dst_rst_packets</pre>	bidirectional_stdev_ps	
src2dst_fin_packets			

Dataset : NSL-KDD

- A benchmark dataset used to assess the performance Intrusion Detection Systems (IDS)
- Each instance of this dataset contains 41 features extracted from the network traffic
 - e.g., protocol type, TCP flags
 - One-hot encoding of categorical features + standardization of all features
- This dataset encompasses 39 types of attacks, with 17 not present in the training set.
- Assessment of the ratio of outliers in the training set to test robustness
 - we vary the training anomaly percentage : 0%, 5%, 10%, 15%
 - Outliers are selected randomly from all training outliers
- Architecture of the model
 - Symmetric autoencoder (Encoder layer size : 122, 8)

Results

