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2. Related Work

• Definition: 

– Anomalies are patterns in data that do not conform to a well-defined notion of 
normal behavior [1] 

[1] Chandola, V., Banerjee, A. & Kumar, V.,  Anomaly Detection: A Survey. ACM Computing Surveys, 2009.

[2] Bulusu, Saikiran, Bhavya Kailkhura, Bo Li, Pramod K. Varshney and Dawn Xiaodong Song. “Anomalous Example Detection in 
Deep Learning: A Survey.” IEEE Access, 2020.

Classical anomaly detectors [2]: 2 steps
1. Models the normal expected network 

behavior 
2. Anomalies are deviations of the current 

behavior from the previously built model

Outlier



6

Observed nominal metadata Reconstructed metadata

• Autoencoder-based anomaly detection: 

– Training : train an autoencoder to reconstruct normal data [3]

– Minimize the energy function = maximize the log likelihood   

2. Related Work

[3] Pol, Adrian Alan, Victor Berger, Cécile Germain, Gianluca Cerminara and Maurizio Pierini. “Anomaly Detection with Conditional
Variational Autoencoders.” 18th IEEE International Conference On Machine Learning And Applications (ICMLA), 2019. 
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Test observed metadata Reconstructed metadata

-

2. Related Work

• Autoencoder-based anomaly detection: 

– Training : train an autoencoder to reconstruct normal data

– Testing : use the trained autoencoder to detect anomalies  

Reconstruction error
=

Free-Energy 
=

Anomaly score 
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2. Related Work

• Limitations of existing approaches 
➢ Strong assumption: 

▪ Training data are anomaly-free, impossible in an IoT context [3] 

➢ Local training: data collection in the LAN

▪ Anomalies may contaminate the training data

▪ Data poisoning

▪ Operational events: configuration errors, hardware failure, traffic congestion

Observed metadata Reconstructed metadata

[3] Wright, J., Ganesh, A., Rao, S., Peng, Y., & Ma, Y. Robust principal component analysis: Exact recovery of corrupted low-rank
matrices via convex optimization. In Advances in neural information processing systems, 2009.
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3. Proposed Approach

• Problem statement:

– Robust unsupervised anomaly detection [4]

– The unlabeled training data contain both inliers and outliers (contaminants)

– The majority of the training instances are nominal

– The ratio of outliers is unknown in advance

• Contribution: 

– GRAnD, a Generative Robust Anomaly Detector that alternates between

1. Filtering training anomalies 

– Extreme Value Theory (EVT)-based rejection strategy 

2.   Learn a robust representation using a generative autoencoder  

[4] Zhou, Chong and Randy Clinton Paffenroth. “Anomaly Detection with Robust Deep Autoencoders.” Proceedings of the 23rd ACM 
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2017.
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3. Proposed Approach
EVT-based rejection strategy 

• Problem statement:

– Early in the training phase, contaminants have larger free energy compared to inliers

– Isolate these extreme values with the Peaks-Over-Threshold (POT) [5] approach

– 2 hyperparameters to define: the initial threshold u, and the risk parameter q.

– where,

– 𝑄3: the third quartile

– 𝐹: the free energy of training instances

– 𝐼𝑄𝑅: the Inter-Quartile Range: 𝑄3 − 𝑄1
– 𝛼 = 1.5

– We perform a sensitivity analysis w.r.t. hyperparameters 

𝑢 = 𝑄3 𝐹 + 𝛼 ∗ 𝐼𝑄𝑅(𝐹)

𝑞 = 10−3

[5] Siffer, A., Fouque, P.A., Termier, A., Largouet, C.: Anomaly Detection in Streams with Extreme Value Theory. In: ACM 
SIGKDD, 2017.

nominal anomalous
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3. Proposed Approach
Training loss

• 3 losses to optimize:

– 3 losses to optimize: 
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3. Proposed Approach
Training loss

• 3 losses to optimize:

– 3 losses to optimize: 

• Minimize the free energy function of L samples

• Maximize the free energy function of S samples

– |.| is the absolute distance and m is a 
margin

– we propose to fix an upper bound m, to 
prevent the loss from diverging
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3. Proposed Approach
Training loss

• 3 losses to optimize:

– 3 losses to optimize: 

• Minimize the free energy function of L samples

• Maximize the free energy function of S samples

• Maximize the free energy function of U samples

– Weighted with their anomalousness probability

– to account for the uncertainty of these 
instances.

– computed with the empirical Cumulative 
Distribution Function (eCDF)
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Dataset: MedBIoT [3]

– 83 IoT devices 

– 4 families: fans, light bulbs, switches, lock detectors

– Three malwares: Mirai, Bashlite, Torii

– ~17 million packets : 70% nominal and 30% anomalous

– 61 metadata-based features 

– Training 

– we vary the training anomaly percentage : 0%, 5%, 10%, 15% 

– Outliers are selected randomly from all training outliers 

– We train one model for each device family 

4. Experimental Results

[6] Guerra-Manzanares, Alejandro, Jorge Medina-Galindo, Hayretdin Bahsi and Sven Nomm. “MedBIoT: Generation of an IoT 
Botnet Dataset in a Medium-sized IoT Network.” ICISSP, 2020. 

Lock detectorSmart switch

fanLight bulb
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4. Experimental Results

Results
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RVAE GRAnD

4. Experimental Results

Sensitivity analysis with respect to hyperparameters

– Comparison between RVAE and GRAnD



19

4. Conclusion And Future Work

• Conclusion:

– GRAnD, a Generative and Robust Anomaly Detector

– Rejection strategy : filters out outliers contaminating the data,

– Joint training: learns a robust representation,

– Inliers can be accurately reconstructed, while outlier 
reconstructions are corrupted.

• Future work:

– Extend this approach to anomaly detection in time-series data

– Detect contextual and collective anomalies
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Dataset  : NSL-KDD 

– A benchmark dataset used to assess the performance Intrusion Detection Systems (IDS)

– Each instance of this dataset contains 41 features extracted from the network traffic 

– e.g., protocol type, TCP flags

– One-hot encoding of categorical features + standardization of all features 

– This dataset encompasses 39 types of attacks, with 17 not present in the training set.

– Assessment of the ratio of outliers in the training set to test robustness

– we vary the training anomaly percentage : 0%, 5%, 10%, 15% 

– Outliers are selected randomly from all training outliers 

– Architecture of the model

– Symmetric autoencoder (Encoder layer size : 122, 8)

4. Experimental Results
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4. Experimental Results

Results


